

HCAL: Calibration and Monitoring

From Scintillation/Cerenkov Lights to JET/MET/tau

Shuichi Kunori U. of Maryland 26-Sep-2000

Issues

Lights (scint, Cerenkov) >> ADC counts >>> GeV of jets, taus, MET

HB/HE/HO

11k readout channels 100k scint. tiles

<u>HF</u>

2.4k readout channels 0.2M fibers

Quality control/test (during construction) Inter channel calibration

& monitoring
timing
gain
dead/sick channel
Time dependent calibration
radiation damage

ECAL+HACL

Non-linear response (due to e/pi >> 1.0)

Material/cracks

tracker/cables/support/...

Pile-up

 E_{τ} =17 GeV in R<0.6 at E34

Physics

FSR: out-of-cone energy

E_T scale calibration

Calorimeter level

weights (longitudinal)

Physics object level. (jet etc.)

Et-eta dependent

Pile-up energy subtract.

Physics object dependent

Pion Response: Linearlity

ECAHL+HCAL: Non compensating calorimeter

96'H2 Teast Beam Data

CMS Simulation

ET=3 GeV pion in $0<|\eta|<5$

Jet Response and Correction (CMSIM/ORCA)

Et-eta dependent correction for QCD jets

Et(corr)=a x Et(obs) + b

- => Different corrections for L1 jets, tau-jets and b-jets
- => Luminosity dependent.

LEP vs. LHC

LEP

- single mass scale
 - mass (Z) at LEP-I
- hard scattering at rest in the lab frame
 - distribution: isotropic
 - (neglecting spin, higher-order effect)

LHC

- big range in mass scale
 - from mass(Z,W, h(?)) to 1-3 TeV
- hard scattering boosted in longitudinal direction
 - Et=50GeV: E=50GeV at η =0 and E=500GeV at η =3.

CMS needs energy calibration for much wider range than LHP. ---- tough job! (with non-compensating calorimeter).

Data Flow

>>> <u>front end</u> <<<

Scint. Lights ->Tile->Fiber1&2->OptCable ->HPD->Amp->ADC-> Charge (for 5-10xings) ->(L1Path) ->(DAQPath)

>>> L1Path <<<

```
->HTR (ch)
E<sub>T</sub>(L1Primitive: 8bits:non-linear)
->L1 LUT (ch)
E<sub>T</sub>(4x4 HcTower: 8bits:linear)
->L1Calo
E<sub>T</sub>(L1jets),Et(L1tau),Et(L1MET)
->L1CaloGlobal(Threshold (obj))
->L1Global
L1Trigger
```

>>> after DAQPath <<<

```
->ReadoutAnalyzer (ch)

E<sub>T</sub>(channel)
->TowerCreator

E<sub>T</sub>(Ec+Hc Tower)
->Jet/MET/tauReco

E<sub>T</sub>(jetR),Et(tauR),Et(METR)
->EtCaloCorrection (obj)
(corr. for linearlity)

E<sub>T</sub>(JetC),Et(tauC),Et(METC)
->EtPhysCorrection (obj)
(corr. for out-of-cone)

E<sub>T</sub>(Parton)
```

```
Calibration/correction
(ch) - channel by channel
(obj) - phys. Obj, (jet, tau, MET)
```


Tools

A) Megatile scanner:

- Co⁶⁰ gamma source
- each tile: light yield
- during construction all tiles

B) Moving radio active source:

- Co⁶⁰ gamma source
- full chain: gain
- during CMS-open (manual) all tiles
- during off beam time (remote) tiles in layer 0 & 9

C) UV Laser:

- full chain: timing, gain-change
- during off beam time tiles in layer 0 & 9 all RBX

D) Blue LED:

- timing, gain change
- during the off beam time all RBX

E) Test beam

- normalization between GeV vs. ADC vs. A,B,C,D
- ratios: elec/pion, muon/pion
- before assembly a few wedges

F) Physics events

- mip signal, link to HO muon
- calo energy scale (e/pi)
 charged hadron
- physics energy scale
 photon+jet balancing
 Z+jet balancing
 di-jets balancing
 di-jet mass
 W->jj in top decay
- >> non-linear response >> pile-up effect

Scenario (HB/HE)

(same to HF)

1) Before megatile insertion

megatile scanner: all tilesmoving wire source: all tiles

2.1) After megatile insertion

- moving wire source: all tiles / 2 layer

- UV laser: 2 layers/wedge

2.2) After megatile insertion

- test beam: a few wedges.

Absolute calib.

Accuracy of 2% for single particle

3) Before closing the CMS

moving wire source: all tilesUV laser & blue LED: all RBX

(do 3, about once/year)

4) Beam off times

- moving wire source: 2layer/wedge

- UV laser: 2 laer/wedge

- UV laser & blue LED: all RBX

5) Beam on (in situ)

Monitor for change

with time

Accuracy < 1%

once/month

a few times/day (?)

From Test Beam to CMS

Test beam data

Test beam data with wire source calibration will give energy scale at the begging of the CMS run.

But it has limitation-

Test beam environment does not have B-field and Tracker material.

>> We use MC, initially.

In order to verify MC, we need data points below 15GeV.

>> need "in situ calibration"

(Lowest data point 20GeV)

In Situ Calibration (Physics Event Trigger)

A) Min-bias events trigger

- estimation of pile-up energy.
- normalization within each eta-ring.
- isolated low E_T charged tracks

2% accuracy with 1k events in HF

B) QCD Jet trigger (pre-scaled)

- normalization within each eta-ring
- normalization at the HB-HE-HF boundary
- test on uniformity over full range.
- dijet balancing to normalize \mathbf{E}_{T} scale in rings.

C) tau trigger

- isolated high Et charged tracks (Et>30GeV)

D) muon trigger (isolated)

- good for monitoring.
- probably too small energy deposit for calibration.

In Situ Calibration (2)

E) 1 photon + 1 jet

 E_T Scale over full range by photon-jet balancing

Note:

- depend on ECAL Et scale
- sensitive to ISR (& FSR)

F) Z (-> ee,
$$\mu\mu$$
) + 1 jet

- E_T Scale over full range by Z-jet balancing

Note:

- depend on Tracker and/or ECAL
- sensitive to ISR (& FSR)

Photon-Jet balancing for HF Jets

E.Dorshkevich, V.Gavrilov CMS Note 1999/038

Using Et(
$$\gamma$$
) > 40GeV, $|\eta(\gamma)| < 2.4$

- minimize MET with 4000 γ

Et(calib) =
$$C_{(S)}(\eta)$$
 Et_(Short)
+ $C_{(L)}(\eta)$ Et_(Long)

- 2.3 days at 10E33 with 1% efficiency

Accuracy < 1-5% for Et>40GeV

(tagging jets)

Z (ee,μμ) - jet balancing

CDF Data (100pb⁻¹): energy scale accuracy to 5% for Et>30GeV

700k events/month at 10E33

|η (lep.)|<2.6 ET(jet)>40GeV

In Situ Calibration (3)

F) Top trigger (1 lepton + jets + 2 b-tags)

- E_T scale by Mass(jj) for W in Top decay.

Parameterized simulation

Peak: 69.6 GeV sigma: 7.2 GeV

45000 events / month at 10E33 with double b-tagging.

Not depend on ISR!

Freeman & Wu (Fermilab-TM-1984)

Scenario toward final ET scale

- A) No special event trigger during beam on. (except for monitor runs)
- B) Min-bias and QCD events will be used to monitor the calorimeter through runs.
- C) Four steps to determine E_T scale after the first run starts.
 - 1. Test beam data and wire source (plus MC) gives initial scale.
 - 2. In 1~3 months, improved E_T scale by physics events.
 - requires very intensive data analyses.

How soon data will be available for analyses? How soon ECAL and MUON/TRACKER will give us calibrated E_{τ} ?

- 3. Development of algorithm for more improved E_T scale.
 - use of full shower shape, i.e. transverse shower shape in ECAL crystals as well as longitudinal shower shape.
 - use of tracks.

How easy to access to full detector information?

- 4. Apply the new algorithm for final results.
 - re-processing (some) eventsHow easy to reprocess events?

Summary

Calibration consists of two parts-

- From light to ADC signal.
 - Wire source and test beam data will give initial energy scale.
 - Wire source to monitor change with time.
 - Laser and LED to monitor timing and gain 'continuously'.
 - Min-bias, QCD events to normalize E_T scale within eta ring.
 - usable before ECAL/TRACKER calibrations are established.

From ADC signal to Jets/MET/Tau

- in-situ calibration
 - dijets, photon-jet, Z-jet, dijets from W in top events
 - move lower Et to higher Et as statistics increase.
 - no special run is required, but timely data analysis will be required.
- Monte Carlo Simulation: try less depend on MC

A lot of fun tasks are waiting for us!

HCAL Timing Calibration

(addition to talk given on 26-sep-2000)

HCAL Timing Calibration

2) Synchronization (global)

L1 data, L1 accept (pointer to pipeline), 40MHz clock

Time Correction in and among RBX

HCAL Pulse (in ORCA4)

HCAL time constants

11 ns: w.l.s. fiber

12 ns: HPD collection time

25 ns: QIE

4 ns shifts -> 1% error in Et meas.

QIE clock control ASIC

clock skewing by 1ns over 25ns

Method

initial variation ~10ns in hardware construction.

- Laser pulse to all tiles (20Hz).
- Monitor by reading out 5 time slices and histograming the sharing fractions.

Adjust individual timing to accuracy = 2~4 nsec.

Synchronization (Global)

Correction for variation in

- Data cable length
- TTC distribution

Adjustable knobs

- QIE (1ns step)
- HTR timing to L1 regional crate
- L1 accept pointer to pipeline

<u>Use trigger 1 crossing after the abort gap.</u>

- read out all channels, 10 times/channel
- histograming to find right bucket
- adjust L1 pointer to correct bucket.

about O(weeks) to check all channels at 10E32